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Chapter 1

Edge Constraints

We have developed discretizations that capture the singular behavior of cur-
rents on open edges in a high-order manner. These discretizations use the
analytic properties of currents along infinity long, open edges. Consider the
metallization that covers the half plane z > 0. The current normal to the edge
at x =0, ~z'/2*9 g €[0...), and the current transverse to the same edge is
proportional to z~1/2*4. The appropriate testing functions and quadratures
are the Gauss-Jacobi polynomials and quadratures. All experiments indicate
that this is a very good method, where the number of points/wavelength to
achieve a given accuracy is of the order of what is need for regular discretiza-
tions of regular geometries. The constraint that currents don’t go off the
adge is implicit in the discretization of the integral equations. )

The singular behavior of current along creases is much more complex.
However, the current along the edge is infinite, with leading singularity pro-
portional to £™/¢~! where ¢ is the angle of the bend, while the current across
the crease is finite. It is only very special geometries with special excita-
tions that the error in the current across the edge dominates. The way we
have chosen to capture the singular current along the edge is to increase the
density of discretization points by tapering patches. When the large currents
along the edge have been resolved to the desired accuracy, the currents across
the crease are captured even more accurately.

This characterization of the current along geometric singularities is con-
firmed with experiments using the automatic patch refinement code devel-
oped as part of the contract. To be specific, it is seen that along the edges
of a cube, the patches must be tapered towards the edge to resolve the cur-
rent along the edge, and this current is orders of magnitude larger than the




current flowing across the edge.

The singular discretizations have been applied to rectangles, sharp elbows,
~ tee structures, cross ctructures and PECs separated by gaps of width A/50,
all with good results. Care must be taken when applying the method to sharp
corners to ensure the singular currents are represented with the discretization.

Below are tables from the simplest geometry studied — a 3\ x 4\ PEC
rectangle with zero thickness. The solution used for comparison is the 12th
order singular discretization. Using the singular discretization with 10 points
per wavelength, the error is 1.3 - 107%; this compares well with the accuracy
obtained with a regular discretization of a regular geometry using the EFIE
and 10 points per wavelength. The second table demonstrates the perfor-

mance of a first order discretization of the same rectangle.

Table 1.1: RMS error of Gauss-Jacobi method on 3\ x 4\ rectangle.

Table 1.2: RMS error of first order method with uniform mesh on 3\ x 4\

rectangle.

Order | Points | Points/A | Error
2 48 2 44
4 192 4 8.6-1071
6 432 6 6.1-1072
8 768 8 5.6-1073
10 1200 10 1.3-1073

Points | Points/A | Error
1200 10 9.9-107!
4800 20 3.1-107!
7500 25 251071




Chapter 2

Wave Quadratures

2.1 Theory

The idea is that in integrating oscillatory functions, one can do better than
Gaussian quadrature. The prescription is to use formula that give accurate
results for some spectrum of waves, rather than a finite set of polynomials.
We first illustrate how this can be done on an interval.

2.1.1 Quadrature on a Line ‘
The prescription is to pick weights (or “charges”) w, and abscissae (or “po-
sitions”) z,, so as to minimize

E(z,w;o) = /dﬂw(u) 2

) 1 n .
> wpen — = / dx e**
y 2/
2

= /dﬂw(u) D waehn — &nlfﬂ—)

= W(o)+ > wV(zn;0)+ > wawnU(zn — 25 0),(2.1)

n,n'

where ¢ is a parameter of the spectrum w(y), and

W(o) = /d,uw(p;a) (%)2 = i/jl dzV(z;0)  (2.2)
V(z;o) = —Q/d,uw(,u; a)cospx%—’tf
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1
= —/_1 d'U(z — z';0) (2.3)
Ulx-2'0) = /dyw(,u;a)ei“(’"zl). . (24)

We see the problem is equivalent to finding a minimum energy configuration
of particles with charges w, in an external potential V (z,) and interacting
with a potential U(z, — z./). Another possible choice is a top-hat spectrum,

w(p) = 6(0* - p?), (2.5)

however, we chose to simplify the integrals by studying the case of a Gaussian
spectrum. ’

Gaussian Spectrum

If we choose

wlp) = ﬁde‘“%z ) (2.6)
then
W = é (_e_‘_";—_l + ﬁerfo) (2.7)
V(z) = VT (erf ol +2) + erf M) (2.8)
o 2 2 ‘
Ulz-1') = e~ @) (2.9)

Small ¢ limit If one expands E in a power series in o2, one finds that the
minimization of the successive term in the series enforce the conditions

1 1
Zwmxfn = —/ dz z™, (2.10)
p 2/

so that the small o limit reproduces Gauss-Legendre quadrature, as should
be expected.

Large o limit In this limit, the one-particle potential V becomes very flat

except near the endpoints. The two-particle potential repels the points to
equal spacing, so that the abscissae become equally spaced.
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Fast evaluation of V(z) Although we have a closed form for V(z), in more
complicated cases (e.g. triangles), this is not the case. In such cases, a fast
" evaluation method may be used to make the derivation of quadrature rules
more efficient. The one-particle potential is proportional to a convolution of
of the two-particle potential with the domain of integration:

1 62:—:'2
-V(z;0) = / dz’ e~ 5T (2.11)
-1
2 fo/2 2
= = d¢ e=(e=/2=0" 2.12
S| e (2.12)

By using the generating function for the Hermite polynomials]AW95], we can
write this as a power series about the point 2z = &/0:

~V(z;0) = ; Z Cm (&0, 0) (0z/2 — fo)m , (2.13)
m=0
where
1 o/2
on@0,0) = or [ dehn (€~ ) (2.14)

- % [Am-1(=0/2 = &) — hm_1(0/2 = &)] , (2.15)

ha(§) = —Y—erf(€) (2.16)
hn(€) = e €HnE) ;5 m>0 (2.17)

and the H,, are Hermite polynomials. In more general cases the closed form
for the coefficients will not be available. In any case, they will be evaluated
for a dense enough set of & (these are FMM group centers) that the power
series will converge reasonably rapidly. In particular if we let

2n—1— '
fO“"fn=%‘ﬁ'-N—£ ; n=1...,N, (2.18)
with
N = [o], (2.19)
then
ox 1
?_gn S 5, (2.20)




if we choose n = [N(z +1)/2] (or 1, if z = —1). (The smallest integer not
less than z is denoted by [z]. The power series may be truncated at a value

" of m equal to the number of digits of precision desired. For ¢ > 1, direct

evaluation of the integrals for the coefficients ¢, (,) becomes expensive. To

~ deal with this, we again use the Hermite generating function to write

L [ 2.21
n(60,0) = l k(€60 (221)
- Z/njdgh (E—&). (2.22)
We then use the identity
=) l .
5 EO) Z m+l (fn - 60) (2'23)
1=0 I
to get
1 N oo
cm (&o,0) = = Do duthmar (& — &) (2.24)
n=11=0
where
1 féntsxw
= g [ - (225)
2 o \ i+ .
T G+ (27\7) ‘ (2.26)

The last equality is one for which we have hope of analytic evaluation in more
general cases. Note that the d,; are independent of &, which is what makes
this method “fast”. The sum over [ may also be truncated at the number of
digits of precisions desired.

Numerical Minimization

For now, work directly with the zs and ws. Depending on the minimization
method used, we may require up to second derivatives of E with respect to
the parameters. These are given by

OE
owy,

= V(2a) + 2> wpU (2n — ) (2.27)




OF
Oz,
0’FE
Own, Owy,
O*FE
Ow, 0%y

0*E
0T, 0%,

WV’ (Zn) + 2wn Y WU’ (zn, — 70r) (2.28)

= 2U (25, — Zp) (2.29)

6nn V' (20) = 2w U’ (T, — 21)
+25nn/ Z wnuU, (mn — $nu) (230)

nll

Wrbnn' V" (20) + 20ppwn Y wpnU” (24 — Tnr)
n//

' 2wwn U (2, — 2 . (2.31)

Since the energy is quadratic in the weights, they can be eliminated using
OE /0w, = 0. Letting E(z) denote the minimum of E(z,w), with respect to

the ws, we have

E

OF
oz,

where

W — % > VUiV (2.32)
—%V,{ S UiV + %Vn SN UL U UiV (2.33)
n’ wn!
Vo, = V(zn) (2.34)
Vi = V'(z,) (2.35)
Upw = Uz, —2x)) (2.36)
= U(zn— 1) (2.37)
SULUL = bpp. (2.38)
1

Note that U’ is antisymmetric.

2.1.2 Quadrature on Symmetric Regions

We classify sets of group-equivalent points in d dimensions and parame-
terize their coordinates, x = {zi,...,%;,...,z4}. There are many differ-
ent types of indices in the notation and it takes some care to keep them




straight. We take A sets of abscissae labeled by «, parameterized by {A} =
Aals- - Aa, -5 Aipg (Mo may vanish), having multiplicity M,, each asso-
- ciated with a weight w,. (In the cases wz have done so far, d = 2, so
0 < p; < 2.) Thus for each \,, there are functions Zi(Ag) forl=1,..., M,
and 1 =1,...,d. The energy function ts be minimized is then

E = W(o)+ Z W MoV [x1 (Ag) ; 0]

a=]
A A Mp
+ D weMo > S wl [x1 (Aa) — X, (Ag);o] . (2.39)
a=1 B=1 =1

[If we need to, we could assume a rotationally symmetric spectrum, so that
V(x) = V(z) and U(x) = U(z).] Minimizing with respect to W, We have
A Mg :
0 = MV [xi(Na);o]+ M, Z ZwﬁU [x1 (Aa) — (As);0]
p=11=1
A Mo
+ 2 wgMp > U lx1 (Ag) — %1 (Aa) ; 0] (2.40)
B=1 1=1
Because U is an even function, this is a symmetric system of equations. In
fact, the two terms in the U are equal because the symmetry of the integration
is also a symmetry of U. This can be simplified if we define

Mp ) .
Uy As;0) = My > Ulx; (M) — 3 (A3) ;0] = Unp = Ug, (2.41)
=1

V(Ayo) = MV [x1 (Aa); 0l = V. (2.42)
Then
A _ A _
E=W+ Z W Vi + Z WeUapwp . (2.43)
a=1 a,B=1

As before, we can either treat the weights as independent variables or
eliminate them.

Independent weights

If we consider the weights and abscissae as independent, useful partial deriva-
tives are

OFE

Ow,

A
= Va +2 Z _agwg (2.44)
B=1
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OF _
B Wl +2waZ W8
0’F _
dwduy . Uas
0*E _
————awaa/\ﬂn = (Saﬁ‘/ﬂ,n - ngU %8 + 25(1[3&2—: Uanﬁ’
O’FE
m = 5aﬁwaTUgVaKV+26agwaﬁ/Z~ m/ﬁ’wﬂ'
- 2w°‘wﬁ Uo(zibﬂu )
where
y ov, 4 Br1(Aa)
vV = L i\Aa)y, ]
s TN
7] 8U (/\a,)\ﬁ)
U = el
o P
5:611
= M ZZ E3) X1 (Aa) = %1 (Ag)]
1=1i=1 as
ov!
v = ok
ary 8)\au
— xlz
= aza)\ana)‘au ( a)]
axlz 32:1 ( )
+M, J Viilxs (g
Z g Vit ()]
ge) = M, §Zdj{ P ) —x )]
! I=11i=1 a’\oma/\au @ v
axli (/\a) 3xlj( a)
"o 3 e U ) = )
7 0z1; (Aa) Oz (Ag)
Uo(tib)u = M li Li\Ng Uz
’ ;1_121 a)‘an 8/\5 ][ 1( )
v = )
0:1:,-
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(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

x1 (Ag)] (2.53)

(2.54)




Ullx] = aggc) (2.55)
Vilx] = aa—xjvi[xJ (2.56)
Uylx] = %U,[x] (2.57)

Dependent weights

If we eliminate the weights by minimizing, we have
o (A}) = -2 z AN, (2.58)

It is important to remember that while U, is a function of )\, and )\ only,

U4 is a function of all \. We then have
E({A}) = w- Z Z Ua Vi
a,B=1
1 &
= W+ 3 Wa Va (2.59)
a=1
OFE 1- A . N
= —=V/ 1 - v, uto! U5LV,
a/\om 2 an% 8 g+ 20"(2:1 ay Yyka'Ya'gV B
= V’ <Wo + 2W, Z ﬂ’wg R (2 60)

2.1.3 Quadrature on a Triangle

The quadrature rule we want approximates integrals over a triangle, with
vertices chosen conventionally to be

vi = (1,0) (2.61)
vy = (=1/2,v/3/2) (2.62)
vy = (—=1/2,-v3/2). (2.63)

Then the integral we are trying to approximate is

_];/ d2xe-—iq-x — —1—6 (s1—s2)/3 + —1—6 (s2—53)/3 + _El.._e (s3— 31)/3 (264)
AlJa 5182 S283 5381
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where

33/2
A= S 2.65
. (265)
s = q-(va—vs) (2.66)
s = q-(vzg—vy) (2.67)
53 = q-(vi—vy). (2.68)
Gaussian Spectrum
The one body potential is
Vix;o) = —% /A P Ulx—x) (2.69)
where the two body potential is
a2 2
Ulx;o0)=e" 7%, (2.70)

Evaluation of V(z) We have not be able to find a closed form for the
single-particle potential, but can reduce it to one numerical integration (ac-
tually six integrations). This may be sufficiently fast that one won’t have to
take the trouble to do it really fast. The first step is to change the integral
over the triangle A to an integral over its boundary dA. Note that we can
write the two body potential as :

U(x) = VY (x) (2.71)

where ) - 5 5

o’z oz

0)=—= |E . .
Y(x;0) 02[ 1( 1 )-}-log( 2 )} (2.72)
Then using Gauss’ theorem,
Vix;o) = ——2-/ dx'n- VY (x - x'). (2.73)
A Jan

Consider for the moment the contribution of the integral over one side (side
three, say, connecting v; and v;) of the triangle to this potential. With a

12




suitable definition of A, /,, and I,, this is

Va(x) = —%g—h Oll dzY (\/x2 + h? a) + [} — 1o (2.74)
- A e e
- 2n M [fame e oy (@
.

_ _%@/002/4 I e—Ah ej/_\(\/xh) + 1l — ] (2.77)

= —%[Ulerf 2l ef%}E
—\/—jf—] /002/4 i e M2 ej/_\(\//_\h)} flh—n (@)
- 22, ("Qh, E,}) =), (2.79)

where

v(n€) = n/ 1;22;2 (2.80)
_ \/_- jf e erf‘/_f (2.81)
~ Zerfnerfé - 75/0 dAfA—ng/—r/;f—‘/—X”-. (2.82)

We expect the second expression to be more useful for 7 > £ and the last for

§>n.
The suitable definitions are

_ (X‘Vl)'(Vz—Vl)__l_ v (Vo — v
h = T—" =7 [(x=v1) - (va=v1)]  (2.83)
b= 2 '_(1;_ Y2 vy = vl — (2.84)
o= y(x-v)?-12. (2.85)

13




2.2 Numerical Results

In addition to the Gauss-Legendre rule, we have implemented two new
quadrature rules in the FastScat program. The first is optimized to approxi-
mate the integral of functions containing a fiat spectrum of wavenumbers on
a triangular patch, up to a cutoff. The second is optimized for a Gaussian
spectrum of wavenumbers. These quadrature rules are hereafter called “Flat
Wave” quadrature and “Gaussian Wave” quadrature, respectively.

In a direct comparison of these rules’ ability to integrate sinusoidal func-
tions of different wavenumbers on a triangular patch with size of order 1,
it can be seen that for low wavenumbers (k<), the Gauss-Legendre rule
works best regardless of how many quadrature points are in the rule (Figure
2.1). This is akin to a heavily overdiscretized problem. For high wavenum-
bers (k>47), none of the rules converges for small numbers of quadrature
points. As the number of quadrature points in the rule is increased, all three
rules tested begin to converge (as measured by where the slope becomes de-
cidedly negative in plots such as Figure 2.2) at about the same number of
points, but both types of wave quadratures outpace the Gauss-Legendre rule
in reducing error. For intermediate wavenumbers, 7 <k<4m, There is no rule
with a clear advantage, and as the number of quadrature points in the rule
is changed, there are often multiple cross-overs between the amount of error
in the different rules (Figure 2.3).

In tests scattering off of a sphere, both wave quadrature rules showed
improvements in accuracy over Gauss-Legeadre quadrature under certain
circumstances. For a six—patch sphere of radius ), the seven—point Flat Wave
rule was about one full digit more accurate than Gauss-Legendre across the
full 180-degree bistatic sweep (Figure 2.4).

Any relative advantage of the wave quadrature rules over Gauss—Legendre
depends strongly on how converged the problem is for the standard method.
In circumstances where the problem is not well converged for Gauss-Legendre
quadrature, using either of the two wave quadrature rules does not improve
the results. Figure 2.5a shows the result for a radius 2\ sphere discretized
in a geometrically similar way to the 1\ sphere used above, and Figure 2.5b
shows the result for another similar sphere of radius 4\, by which time there
is no distinction between any of the rules tested, and all are clearly not
convergent.

14




k=m/10
Test Patch, L=1

0 I T ' T ' T | T
[(3—8] Flat Wave ]
i O—O Gaussian Wave
»—x Gauss-Legendre
5

Logm Relative Error
)
]

D
15 -
)
] : | | ) l 1
-2 L —
0 2 4 6 8 10

Number of Points in Rule

Figure 2.1: k = m/10. Gauss-Legendre quadrature converges fastest for low
wavenumber. This is the regime where the Taylor expansion of the sinusoid

is most valid.

15




k=9n
Test Patch, L=1

T I T I T T
- [3—1 Flat Wave
o G Gaussian Wave [—|
»—x Gauss-Legendre
5 - -
E
[63]
2
g 5 —
]
-4
o
Q
2 i i
-10 — _
L | ! | ! |

5 10 15
Number of Points in Rule

Figure 2.2: k = 97. For high wavenumber, both wave quadrature rules
surpass Gauss-Legendre, but the Flat Wave rule is superior for more points
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k=3%

Test Patch, L=1

2 I T T ! T
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[3—£] Flat Wave
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1 ] ! | L |

5 10 15
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Figure 2.3: k = 3m. With intermediate wavenumber, there are crossovers
between the various quadrature rules.
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Figure 2.4: Accuracy comparison of three quadrature methods for a sphere
of radius A.
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—— Gauss-Legendre

Sphere r=2A |~ Gaussian Wave | Sphere r=4A

e Flat Wave

Log,, Relative Error

0 50 100 150 “o 50 100 150
Bistatic Angle (Degrees) Bistatic Angle (Degrees)

Figure 2.5: In regimes that are poorly converged for Gauss-Legendre quadra-
ture, wave quadrature affords no improvement.
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Chapter 3
Low Frequency FMM

We developed a multilevel low frequency sparse FMM -operator for the vector
Helmbholtz kernel which has a theoretical apply time that scales O(N). It uses
a top-down automatic grouping algorithm, which allows the groups to become
as small as needed to construct an efficient multilevel operator. This operator
is implemented to run on multiprocessor hardware with shared memory and
is part of HRL’s FastScat scattering code.

Dense LF-FMM Max Rel

points | Time | Time/Scaling | Error
960 2.3 1.2 5-107°
3840 37 8.5 /1.44 1-1075
15360 575 47 /1.23 1-10°°
61440 | 9682 226 /1.13 3-107°
245760 | 163432 993/1.07 2-10°°

Table 3.1: Planar Lattice of Spheres. Apply time in seconds on an Origin
2000 with 400MHz R12000/R12010.

From these data observe the asymptotic approach to the theoretical linear
scaling of the multilevel multipole operator. Also note the low overhead cost
of the multipole method — the break even point is around one thousand
unknowns.
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Dense LF-FMM Max Rel

points | Time | Time/Scaling | Error
960 2.77 1.14 8-107°
3840 | 444 9.74/1.55 | 7-107°
15360 | 741 58.5/1.29 6-107°
61440 | 12043 452 3-107°

Table 3.2: Planar Lattice of Spheres. Apply time/RHS for 4 RHS; seconds
on an Origin 200 with 225MHz R10000/R10010.

Dense | LF-FMM | Max Rel

points | Time Time Error
480 1 1 1-107%
1620 13 5 1-10°°
3840 71 32 3-1078
7500 273 76 7-1077
12960 | 813 102 2-1077
20580 | 2067 254 9-10°8
30720 | 4936 576 51077

Table 3.3: Cubic Lattice. Apply times in seconds on an Origin 2000 with a
400MHz R12000.

3.1 Electromagnetic Multipole Methods for
the Helmholtz Equation |

The field of a current distribution can be described in the current free region
with a multipole expansion. Multipole expansions are often advantageous
because complex current distributions can have external fields accurately
described with a small number of multipole coefficients. When the size of
the source region is large with respect to wavelength the external field needs
many moments to describe. In this case, the operator that translates the
multipole expansions can be diagonalized.
The Green function for the scalar Helmholtz equation is

1 etklz—vl

Glz,y) = — .
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For |z| > |y| this can be expanded in terms of multipoles as

Gle) = 3 SN2 +1) Pz -6) h(kla) ikll). (52

The dyadic Green function for the electromagnetic equation is

eiklz_yl

Glz,y) = ik (1+ %VV) (3.3)

dr|z —y|
Consider two non-intersecting spheres, each with radius R. Sphere X is
centered at X and points within the sphere are X + z, |z| < R. Sphere Y,
centered at Y, have points offset from its origin by y.
For a current distribution given by J(X + z) that is zero outside sphere
X, the field E(X + z) outside sphere X can be expressed as

B(X+2)=3 Z m Pa(klz]) Yim(Q(z)) (34)

=0 m=-1

where the vector coefficients «,, are determined by the current distribu-
tion. The unit vector along z is Z. The unit vectors along the cartesian axes
are Z,y,Z. The spherical angles are cosf = % - Z and cos¢ = E zZ, ( =
& — zZcosf. The spherical angles are abbreviated Q = (cos#,¢) and the
differential area of the unit sphere is dQ) = d¢ sin 8d6.

The fields in a source free region are determined by the value of the
fields on the boundary. Using the radiation condition at infinity, and the
orthogonality of the ¥;,(Q), the a;m are given by the integration over any
shell of radius A > R,

o = ' (kA) [ 42 Y2, (@) B(X +2(4,9)) (3.5)
The value of A can be arbitrarily large. Letting A — oo,
Q= 1= [ v [ &z e @ (14 k(Q) K(Q))- (X +1). (3.6)

- In sphere Y, |y| < R, free of currents, the field can be expanded as
0 l

Y + y = Z Z ﬁlm ]l klyl )/lm(Q(y)) (37)
=0 m=—

The problem is how to express the 3, in sphere Y in terms of the a,,.
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3.2 High Frequency, kR > 1

Write the scalar kemel between a point z in sphere X to a point y in sphere
Y as, ‘

iklo+]

|0+

A = F 2V C Y BE- D) (kA kA, (38)

where
d=z-y, A=X-Y, |A]l > |d] (3.9)

Using [MF53, Eq. 11.3.47],
anit j,(k|8]) B(6 - A) = / dQ e* 8 pp(Q) - A) (3.10)

the Greens function can be written

ciklo+A

BT A % >_i(20+ 1) k(KA /dﬂ eV pr(Q)-A).  (3.11)
l

With the truncation of the infinite sum to L + 1 terms, the sum and
integration can be exchanged to define a plane-wave expansion of the Greens
function,

eik|6+A] ik - '
- k7 (Q)-§ )
N /dQ TL(,A) e , (3.12)
where L
L0, A) =342 + 1) hy(k|AD B(F(Q) - A) (3.13)
!

Noticing that § < 2R, an estimate of L comes from the condition that
/ dz Py(z) e¥*°F < (3.14)

From this comes the bound, (k2R)!/l! < €; the I** term in the Taylor
series expansion of the exponential is less than e. The empirical formula
used in FastScat is

L=kR+ digits

In(k2R + 7). (3.15)

The choice of L establishes that the order of the quadrature rule should be
2L, or a Q = (L+1)? point rule with abscissae and weights, {Q4,dQ,}, given

23




by a product of a Gauss-Legendre rule in 6 and a trapezoidal rule in ¢. The
Green function is expanded in plane waves and is
gklo+al . @

A & > dQ, e WA (Q A). (3.16)
q .

3.3 Mid Frequency

Why does the high frequency kernel break as kR — 0?7 In this limit, the
empirical formula for L is L ~ 0.7 digits.

To get a handle on how many multipole terms are needed, consider the
Laplace operator between the two spheres with radius R centered at X and
Y with a center to center separation of 6R. Write the kernel 1/|6 + A|. For
a ¢ colinear with A this can be written .

1 1 1 1 -4,
|5+Ai_éﬁl+5mR“ﬁ%g;€§” (3.17)

This is valid because |§| < 2R. For this expansion to have an error of ¢ for
the largest value of §, L must satisfy the condition

(2)F <e, (3.18)

or
L=—log,e (3.19)

which is, approximately, L = 2 digits.
Using this value for L, the high frequency method can still be used if
k|Al is not too small. For such values the leading term in the expansion of
w(k|A]) is : )
20-1)!
ElA]) = -,
yl( ! l) (klAl)l+1

It is possible to preserve numerical significance in the sum used to compute
I'L(2, A) if the condition

[(2L — 1)1
kA > L(—ﬁom—) | (3.21)

holds true, for a floating point precision of 10~.

(3.20)
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The mid frequency method in FastScat uses the high frequency method
with this modified value of L and the restriction on the minimum value of
k|A|. This method has to be used very carefully because it fails calastroph-
ically as k|A| goes to zero. /

3.4 Low Frequency

The operator that shifts the oy, of sphere X to the f;, of sphere Y can be
determined by evaluation of the fields from the sources in sphere X on a shell
of non-zero radius around point Y. Thus

6lm = Flm,pq Qpq (322)
Tingg = 57 (kB) [ 49 Vi (52) hy(R) Ypo(S). (3.23)

In this expression, R and §} are the distance and angle from point X to a
point at 2 on the shell of radius B centered at Y. The radius B must be
such that j(kB) # 0. For the low-frequency domain, the choice B = R/2 is
not unreasonable. -Using this shift operator alone a single stage, O(NInN),
method can be developed.

'To implement an O(N) multilevel scheme, the coefficients must be shifted
to and from the centers of parent and child groups. A child group is contained
in the sphere centered at X of radius R and this child’s parent group is
centered at X and has a radius of 2R. The child group is wholly contained
within its parent group.

To shift the ap, centered at X to a parent group of radius 2R centered
at X near enough so that |X — X| < R, use

G = b (62R) [ d9 V() hp(ER) Yp(§D) (3.24)

where R and ) are the distance and the angle from point X to a sphere of
radius 2R centered at X. To shift the oim into the plane-wave expanswn
used in the high frequency expansion, use,

z‘—l—l

En() = 3 5 1 Yin(®). (3.25)
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Trickling down the hierarchy, the 3, are expressed in terms of the plane
wave expansion as

Bim = 4 / dQ Y} (Q) Ew(Q). (3.26)
Within the low-frequency domain, the qu are shifted down with
B = 57 (R/2) [ dQ Y (@) Go(kR) Yig(@) B (3:20)

where 1;’: and ) are the distance and the angle from the center of the parent
group, X, to a point at {2 on the child’s shell of radius B/2 centered at X.
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Chapter 4

Automatic Patch Refinement

We developed a method to refine the discretization and have validated the
method on a variety of complex geometric objects. For each run of the
scattering program the currents are saved to a file. A postproccessing step
reads this file and determines which patches have the largest current error,
then it subdivides the patches with the largest errors and generates a new
geometry file. The jet is defining a suitable measure of current error, and
recognizing that a patch can be split in two directions, one of which may be
adequate to resolve the current.

On each patch, two components of the surface current are known at Ug,
the @ nodes of a quadrature rule, j,4; p € [1,2] and é,, is the orthogonal
tangent basis. The current at point g is

Jg = J1q€1(ug) + J2,4€2(uq)-

A set of scalar functions, ¢*(u), can be fit to these values, with,

K
Jug = Z ¢k(uq) ju,k = ‘I)qkjk-
k=0

If the number of independent functions equals the number of quadrature
points, the system is square. A reduced system of functions can be con-
structed from the square set by differentiation with respect to the parametric
directions.

K
ju,q = Z au¢k(uq) j;:,k = Aqkjk-
k=0
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This system of over-determined equations is singular; the coefficients can
be found in a least squares sense using singular value decomposition of the
matrix A and its pseudo-inverse, A~'. The array of errors at quadrature
points, ug,q € [1...Q] is given by

e, =(1—-AA™)j,, u=12. (4.1)
A measure of the error over the entire patch is given by

€= Weepng, p=12 (4.2)
q

where w, are the quadrature’s weights. For convex scatters, this measure of
error corresponds well with the error in the far field. For other convoluted
geometries, there is no such simple measure. :

If the error €, is larger than a user specified threshold, then the patch is
divided into two halves (in parametric space). This leads to the result that
a quadrilateral patch could be divided into 2 or 4 sub-patches, or not at all.
It is worthwhile to investigate the error at each point in the hope of finding
a point more suitable than the parametric center to divide the patch.

If there are multiple computed currents corresponding to different exci-
tations (e.g. resulting from an angle scan), then the error is the RMS error
of all the currents. As the code is currently written, there are at least two
currents corresponding to the two polarizations of an incident plane wave.

This code has heen tested on a variety of geometries, with PEC and
penetrable volumes. The example test case summarized in Table 4.1 is a
constellation of PEC objects ( a sphere, a thin, flat plate, and a flattened
torus, in close proximity to each other ) with a dipole source a small fraction
of a wavelength off the surface.
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Pass | Points Error
1 1464 | 4.17- 107!
3 1626 | 1.47-107!
5 2184 [1.02-107!
7 3138 | 6.06-1072
9 5586 | 3.35-1072
11 8106 | 1.73-1072
13 | 11994 | 7.28 -1073
15 | 15144 | 3.11-1073

Table 4.1: Convergence of Automatic patch refining algorithm.
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Chapter 5

Raytheon Missile Systems
Code Validation

A subcontract was awarded to RMSC for validation of the FastScat code
against range measurements. Jack Kennedy, an RMSC engineer, performed
the work on the subcontract. The appendix of this document contains a
complete report of his investigation.

The validation task included construction and RCS range measurement
of three metal targets and numerical simulation of the RCS for these targets
using three electromagnetic modeling codes.

The targets were chosen to test the ability of the code to make accurate
RCS predictions for targets containing geometric features commouly found
on real air vehicles. The first target, a cube six inches on a side, v.as chosen
to test the effectiveness of each code in dealing with targets that contain
geometric singularities, in this case, edges and corners. When geometric
singularities are present they can interrupt the predominant movement of the
surface current, producing standing waves and strong radar reflections. They
also'result in surface current singularities, which pose a modeling challenge.
The second target, a trihedral corner reflector with sides of 4, 6, and 12
inches, was chosen to test each code’s ability to predict the RCS of a target
for which multiple bounce scattering plays a significant role. The RCS of
this target is also affected by the presence of numerous edges and corners.
The third target is an 8” long by 8” wide wing-like fin. Its surface is mostly
smooth except for an acute angle corner along the trailing edge. This target
was chosen to test how well each code computes the RCS of a curved target.

Each target was take to the Raytheon Site A outdoor test range in San
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Diego, CA where monostatic RCS measurements at multiple aspects and
frequencies were obtained. Details of the measurement process can be found
in the full report.

The various measurements were compared against computed results from
three electromagnetic modeling codes: FastScat, FISC, and Xpatch. For the
two targets comprised of flat surfaces, the results computed by FastScat and
FISC matched the experimental results well. Both codes were notably su-
perior to Xpatch in terms of RCS accuracy, especially at low frequency. For
the curved target, FastScat and FISC were again quite superior to Xpatch.
In this case, however, FISC was generally less accurate than FastScat, espe-
cially for lower frequencies. The difference can be attributed to the fact that
FastScat internally represents a curved surface using curved mesh elements
whereas FISC approximates a curved surface using flat mesh elements. For
this reason and others, it was generally possible to  obtain more accurate
results from FastScat in less time than for FISC.

The overall conclusion is that FastScat is a significantly advanced electro-
magnetic computation tool that generally produces superb RCS predictions
for metal targets. '
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Appendix A

Fastscat Validation, Final
Report

This report is supplied as a separate volume.
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